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AbslracL Earlier workers have shown that percolation and conductivity properlies of 
14eoordinated random and regular networh in 3D are essentially indistinguishable. This 
work examines the generality of this result for networb of low coordination (2 3). 
The critical permlation exponents. determined by finite-size scaling, are found to be 
independent of topology and coordination in agreement with existing literature values.. 
However, differences in the percolation threshold, conductivity, and cluster distributions 
increase wilh decreasing coordination suggesting that the transferability of these prop- 
erIies between networks of different topology but the same coordination is not valid in 
general. 

Regular grid pore networks are being used increasingly to model transport and re- 
action processes occurring in porous media (reviewed by Sahimi et al 1990). The 
structures of the media are, in general, disordered and the work of Jerauld et a1 
(1984b) is the most commonly cited justification for using a regular square or cu- 
bic grid to represent them (Sahimi and Tsotsis 1985, Sahimi et a1 1990, Sahimi and 
Stauffer 1991). Jerauld et a1 determined the percolation thresholds and critical ex- 
ponents as well as other percolation properties for a BCCL network (coordination 
number, z = 14) and compared these results with a modified Voronoi tessellation of 
the same mean coordination number. For all the properties evaluated the differences 
between the random and regular grids were small and often within the uncertainty of 
the estimated value. It was concluded that the mean coordination number is much 
more important in determining the properties of the network than are topological 
considerations. 

Recently, Hollewand and Gladden (1992) have compared the behaviour of 3D 
random and regular networks in the modelling of diffusion and diffusion with simul- 
taneous reaction occurring in porous media. The two different topologies exhibited 
significantly different behaviour. Moreover, it was shown that lattice coordination 
numbers in the range 3 to 6 are required to obtain effective diffusivities in agree- 
ment with experimental measurements reported by other workers. The aim of the 
work presented here is to examine whether the effect of network topology remains 
small at these lower coordination numbers, i.e. whether the conclusions of Jerauld 
et a1 (1984a, b) are valid for all coordination numbers. Throughout this work, the 
deanitions and nomenclature used by Jerauld el af (1984a, b) and Kirkpatrick (1979) 
will be employed. 
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Jerauld el a1 (1984b) obtained a random network by randomly deleting bonds 
from a Voronoi tessellation until the average coordination number was 14. In order 
to obtain random networks with coordinations in the range 3 to 14, we have used a 
different method of constructing the network. The network is generated by distribut- 
ing N points at random in a 3~ space. Nearest neighbours are connected until the 
specified coordination number is satisfied at every point "0 parallel planes are then 
imposed on the network and the intersections of bonds with these planes define the 
network surfaces. The grid is periodic in the other two orthogonal directions. 

The regular grids for z = 3, 4, 5, 6 were based on the simple cubic structure 
while the B C a  network was used for z - 14. ?b obtain coordination numbers of 
3, 4 and 5, bonds were deleted from the simple cubic structure in a regular fashion 
until each node had the required coordination number. This gives rise to unit cells 
of length 6, 3 and 6 for the coordination numbers, 3, 4 and 5, respectively. Larger, 
periodic networks were constructed out of these unit cells, each having the property 
that they consist of a single cluster when the conducting fraction p = 1. Random 
networks containing up to 18OOO points and regular grids up to 42 x 42 x 42 points 
were generated. All simulations were performed using SUN SPARC work-stations. The 
number of realizations of each network ranged from Qooo for the smallest network 
(6 x 6 x 6) to 800 for the largest (42 x 42 x 42). For the random networks, several 

'bond assignments were made for every realization of the network and all calculated 
properties were based on the accessible fraction at p = 1 (since a few isolated clusters 
are formed in generating the random model). 

Since the bond percolation problem is more appropriate in the study of transport 
in porous media we restrict our discussion to this case. For each coordination number 
considered, bonds were assigned as present or absent with probabilities p and I-p, 
respectively, in the usual manner. For a network of length L, where L = N1f3 ,  
the proportion of conducting networks, R( L ,  p) and the percolation probability, 
P ( L ,  p) were determined as defined in Kirkpatrick (1979). Previously, Reynolds 
el a1 (1980) have found that R ( L ,  p) is described accurately by a cumulative beta 
distribution. For both random and regular networks at low coordinations, we have 
obtained a better fit for z < 6 using a three-parameter exponential or Weibull distri- 
bution of the form 

~ ( z )  = 1 - e x p ( - ( y ) " )  z > c 

although it is observed that this function has an unbounded domain for z > pc. 
In all cases the difference in fit between (1) and the beta distribution in the range 
0.1 < R ( L ,  p )  < 0.9 is small and does not affect the calculated properties within 
the estimated uncertainties. Figure 1 gives results of R ( L ,  p) for the 3-coordinated 
random network. 

Following Kirkpatrick (1979) the percolation thresholds, p,, were estimated by 
using the fact that for a suitable x < p e ,  p ( R ( L )  = I) increases with L and 
for x > p,,  p ( R ( L )  = x) decreases with L. Both tend to p ,  for large L and 
so p ,  is estimated by extrapolating the two curves. Values of x of 0.2 and 0.8 were 
found to be suitable for all simulations. The calculated thresholds are given in table 1. 
Considering firstly the networks with z = 14 it is clear that the results for the random 
and regular grids agree within the quoted uncertainty. As the coordination number 
is decreased, the difference between the percolation thresholds in the random and 
regular grids incrcases from 0.035 at z = 6 to 0.103 at z = 3. In all cases, the 
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threshold in the random network is greater than in the regular grid. The threshold 
for the regular grid at z = 4 agrees well with the reported value for the diamond 
structure suggesting that the bond arrangement in the regular grid is not important 

Tpblc 1. Percolation thresholds for random and regular networks, 

Random Regular Literature 
I grid PC grid p c  regular 

grid p c  

3 0.646 i 0.005 0.543 f 0.004 - 
4 0.459 i 0.003 0.382 f 0.003 0.388. 
5 0350 f 0.003 0.302 f 0.003 - 
6 0.283 f 0.002 0.248 i 0.W2 02.455 f O.W0Sb 

14 0.103 f 0.002 0.099 f 0.002 0.0991 f 0.wo5c 

a Data for a diamond 3D grid, from Stauffer (1985) 
From Kirkpatrick (1979). 
From Jerauld et ol (1984b). 

P 
Fgum I. R(L, p) d a h  and a 61 10 (1) for the 
random nelwork ( z  = 3). 
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z 

Figure2 Comparison of random and regular lattice 
resulk with the hypothesis zp,  = 1.5 f 0.1. 

The dependence of the percolation threshold on coordination number is weU 
known. Scher and Zallen (1970) first suggested that the critical probability, defined as 
the fraction of occupied space in the continuum percolation problem, is independent 
of lattice structure. For site and bond percolation, the product zp,  has been proposed 
as the appropriate quasi-invariant group. For bond percolation in 3D, z p ,  = 1.5 f 
0.1 has been proposed (Zallen 1983, Guyon 1987). Figure 2 shows the values of this 
group for the random and regular lattices obtained in this study; the results quoted by 
Zallen (1983) are also given. Not onIy does this emphasize the difference between the 
random and regular lattices, but clearly in both cases z p c  is a decreasing function of 
z. This result combined with the absence of a formal justification for the invariance 
of zpc and the critical density illustrates the limitations of these heuristics. 
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lhble 2. Crillcal exponents for random and regular nclwork Nclworlir of mordinalion 
3, 4, 5, 6 and 14 were studied. 

Random Regular 
m d d  mcdel LiteralUIE 

# 0.42 f 0.02 0.42 i 0.02 0.42 f 0.006' 
v 0.91 ztO.03 0.91 f 0.02 0.906 f OD3b 
1 1.9 f 0.1 1.9 zk 0.1 1.94 f 0.1' 

Fmm Nakanishi and Slanly (1981) 
Fmm Jerauld cf d (1984b). 
Fmm Denida et 111 (1983). 

Fiite-size scaling was used to determine the critical constants which are given 
in table 2 Following Reynolds et a1 (1978) the correlation length exponent, v, was 
determined from 

where p' is near the percolation threshold. Since for a finite network the threshold 
is not uniquely defined we chose p' such that R( L, p') = 0.5. The percolation 
probability exponent p was determined from 

where the values of p ,  and U were taken from the previous determinations and 
assumed to be constant (Kirkpatrick 1979). The exponent p was taken as that value 
for which all the data lie on a single universal curye given by equation (3). It 
was possible to estimate p to within 40.02 using this method. Within the quoted 
uncertainties, the critical exponents are independent of the network structure and 
coordination number and agree with commonly accepted values. This supports the 
current weight of evidence suggesting that these parameters are functions of the 
network dimensionality only. 

The conductivity G(L,  p) was determined at the thresholds given in table 1 for 
both random and regular grids of coordination z = 3 and x = 6. Regular grids with 
L = 6, 12 18, 24 for z = 3, L = 6.9, 12, 15, 18 for z = 6 were used. The random 
grid sizes used were N = 200, 500, 1000, 3000, 6000. The scaling law (Jerauld et a1 
198413 and references therein) 

G ( L ,  p , )  o( L-"" (4) 

was used to calculate the conductivity exponent and a result of 1 = 1.9 4 0.1 was 
obtained for both coordination numbers and network types. 

The conduction problem is of interest in the study of transport in porous materials 
and a universal conductivity exponent is not sufficient to describe transport in the 
material. Figure 3 shows the calculated conductivities for z = 3 and z = 6 for the 
random and regular networks (L = 12). This demonstrates the effect of the different 
percolation thresholds on the conductivity at p > p,. At the lower coordination 
number the conductivity of the random network is significantly lower than in the 
regular grid. The conductivities approach each other as the coordination number 
increases. 
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Figure 3. Random and regular nehuork conductiv- 
111e for I = 3 and I = 6 ( L  = 12). 

Figure 4, Bond cluster distributions for random 
and regular grids z = 3, n = 1. 3, 5. .. 

P P 
Figure 5. Bond cluster distributions for random Fiure  6. Bond cluster disfributions for random 
and regular grids E = 4 n = 1, 3, 5. and regular grids I = 14. n = 1, 3, 5. 

A useful means of visualizing the difference in the structures of the networks is 
the cluster distribution u(n ,  p) defined as the probabiiity that a bond belongs to a 
cluster of n bonds (Winterfield et al 1981). Figures 4, 5 and 6 compare the cluster 
distributions for random and regular networks with z = 3, 6 and 14, respectively. 
For z = 3 and 6 the cluster distributions obtained for the random grids are broader 
than those found in the regular grids, consistent with the resula obtained by Jerauld 
et al (1984a) for 2D grids. The relative difterence between the random and regular 
distributions is largest for z = 3. In the cases of z = 3 and 6, the random networks 
have a greater tendency to form small clusters which is consistent with the higher 
percolation thresholds of these network compared to the regular grids. At z = 14 
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the differences in the distributions are small. 
Although it has been shown previously that at high coordination numbers the 

effect of topology on the percolation properties of a network is very small, we have 
shown that this general conclusion does not extend to small coordination numbers. 
The effect of topology becomes more important as the network coordination number 
decreases. This difference is not observed in the critical percolation exponents and the 
values of these obtained are in agreement with currently accepted universal values. 

M P Hollewand and L F Gladden 
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